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Abstract. Malaria remains a major burden on global health, causing about half a 

million deaths every year. The objective of this work is to develop a fast, auto-

mated, smartphone-supported malaria diagnostic system. Our proposed system is 

the first system using both image processing and deep learning methods on a 

smartphone to detect malaria parasites in thick blood smears. The underlying de-

tection algorithm is based on an iterative method for parasite candidate screening 

and a convolutional neural network model (CNN) for feature extraction and clas-

sification. The system runs on Android phones and can process blood smear im-

ages taken by the smartphone camera when attached to the eyepiece of a micro-

scope. We tested the system on 50 normal patients and 150 abnormal patients. 

The accuracies of the system on patch-level and patient-level are 97% and 78%, 

respectively. AUC values on patch-level and patient-level are, respectively, 98% 

and 85%. Our system could aid in malaria diagnosis in resource-limited regions, 

without depending on extensive diagnostic expertise or expensive diagnostic 

equipment.  

Keywords: Mobile Health, Computer-aided Diagnosis, Malaria, Deep Learn-

ing, Image Analysis. 

1 Introduction 

Malaria remains a major burden on global health, causing millions of deaths every year 

in more than 90 countries and territories. According to the World Health Organization’s 

(WHO) malaria report in 2018, about 219 million malaria cases were detected world-

wide in 2017, causing approximately 435,000 deaths [1]. Malaria is caused by Plasmo-

dium parasites that are transmitted though the bites of infected female Anopheles mos-

quitoes. An estimated 9 out of 10 malaria deaths occur in in sub-Saharan Africa; most 

deaths occur among children, where a child dies almost every minute from the disease 
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[1]. Microscopy examination of stained thick and thin blood smears is currently con-

sidered as the gold standard for malaria diagnosis [2, 3]. Thick blood smears are used 

to detect the presence of malaria parasites in a drop of blood, whereas thin blood smears 

allow differentiating parasite species and development stages. Microscopy examination 

is low-cost and widely available, but is time-consuming. Moreover, the effectiveness 

of microscopy diagnosis depends on a parasitologists’ expertise [4]. In situations with 

poor quality control, inaccurate results can lead to misdiagnosis or inappropriate treat-

ment [4]. Thus, a fast and efficient automated diagnosis system is essential to malaria 

control. 

The development of small camera-equipped microscopic devices, such as 

smartphones, has offered a new way for malaria diagnosis in resource-poor areas, using 

image processing and machine learning techniques [5]. Previous work has focused on 

the design and development of mobile devices for capturing images to replace current 

microscopes [6]-[12], also in combination with image processing  [13]-[18]. However, 

so far, most of the work has concentrated on thin blood smears, and only the system in 

[16] is developed for parasite detection in thick blood smears. 

In this paper, we propose a fast, low-cost, automated system for diagnosing malaria 

in thick smears. In fact, our system is the first system that can process thick blood 

smears on smartphones using image processing and deep learning methods. We imple-

mented the system as a smartphone application (app), which runs on Android phones 

and which can detect parasites in a thick blood smear image within 10 seconds. Our 

system aims to aid in clinical diagnosis of malaria in resource limited areas by trying 

to solve pending issues such as accessibility, cost, rapidness, and accuracy. Compared 

to the work in [16], we apply deep learning techniques for parasite detection and 

achieve more accurate results on more patients, including both normal and abnormal 

patients. 

The paper structure will be as follows: Section 2 describes the image processing and 

analysis methods for our proposed system; Section 3 presents our smartphone tool for 

automated malaria diagnosis; Section 4 shows the experimental results on 200 patients; 

and Section 5 concludes the paper with the discussion and conclusion. 
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Fig. 1. Flowchart of our automated malaria diagnosis system. 

2 Image Processing and Deep Learning Methods 

For our automated malaria diagnosis in thick smear images, we split the problem into 

two sub-problems: white blood cell (WBC) detection and parasite detection. We first 

detect WBCs and remove them from the image so that they do not distract our subse-

quent parasite counting method. This also provides the WBC count, which is an essen-

tial part of the standard protocol for diagnosing malaria in thick smears. The second 
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stage, parasite detection, consists of a screening step using image-processing methods 

and a classification step using deep learning methods. Figure 1 shows the flowchart of 

our automated malaria diagnosis system. 

2.1 WBC Detection 

Based on a histogram analysis of thick blood smears, we assume that both the nuclei of 

parasites and WBCs have lower intensities than the background due to their staining. 

To avoid confusing WBCs with parasites, we first filter out WBCs before performing 

parasite candidate screening. For WBC detection, we first convert a thick smear RGB 

image into a grayscale image. Then, we threshold the grayscale image using Otsu’s 

method [19]. After this, we apply morphological operations to separate out WBCs. We 

can count potentially touching WBCs as separate cells by considering the typical ex-

pected size of a white blood cell. Before we screen for parasites in the next stage, we 

set all pixels of detected WBCs to zero. 

2.2 Parasite Detection 

Parasite detection in thick blood smear images involves parasite candidate screening 

and classification. We identify parasite candidates using our proposed Iterative Global 

Minimum Screening (IGMS) method and perform classification by a customized Con-

volutional Neural Network (CNN) classifier. 

 

Fig. 2. Architecture of the customized CNN model for parasite classification. The numbers below 

the green dotted line represent the convolutional kernel sizes and the sizes of the max-pooling 

regions. The hidden layers include three fully-connected layers and two dropout layers with a 

dropout ratio of 0.5. The output softmax layer computes the probabilities of the input patch being 

either a parasite or non-parasite. 

IGMS identifies parasite candidates by localizing the minimum non-zero intensity 

pixel values in a grayscale image. If only one pixel is localized, a circular region cen-

tered at this pixel location with a pre-defined radius of 22 pixels, which is the average 

parasite radius, is cropped from the original RGB image and is considered a parasite 

candidate. If several pixels with the same minimum intensity are localized, a circular 
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candidate region is extracted for each of them when its distance to at least one of the 

other pixels is larger than 22. Once a parasite candidate is selected, the intensity values 

inside this region of the grayscale image will be replaced by zeros to guarantee the 

convergence of the IGMS method. To further reduce the runtime of parasite candidate 

screening, the original thick blood smear image is downsampled by a factor of two in 

each dimension for localizing minimum intensities, while the candidates are always 

cropped from the original RGB image. The IGMS screening procedure stops when the 

number of parasite candidates reaches a given number. In our experiments, we identify 

400 parasite candidates for each image to cover the true parasites as much as possible, 

while still providing an acceptable runtime. Using this number, experiments on our da-

taset of 200 patients show that we can achieve a sensitivity above 97% on image level 

and patient-level. Each parasite candidate is a 44×44×3 RGB image patch, with pixels 

outside the circular region set to zero. 

Once the parasite candidates are identified, we use a CNN model to classify them 

either as true parasites or background. In this work, we customize a CNN model con-

sisting of three convolutional layers, three batch normalization layers, three max-pool-

ing layers, two fully-connected layers and a softmax classification layer as shown in 

Fig. 2. The batch normalization layer is used to allow a higher learning rate and to be 

less sensitive to the initialization parameters, followed by a rectified linear unit (ReLU) 

as the activation function. 

3 Smartphone Tool 

Based on the image processing algorithms and deep learning methods for WBC and 

parasite detection, we develop a smartphone-supported automated system to diagnose 

malaria in thick blood smear images. We implement the system as an Android platform 

app. When using this app, the camera of the smartphone is attached to the eyepiece of 

a microscope, while the user adjusts the microscope to find target fields in the blood 

smear and takes pictures with the app. The algorithms in the app will then process these 

images directly on the phone. The app records the automatic parasite counts, along with 

patient and smear metadata, and saves them in a local database on the smartphone, 

where they can be used to monitor disease severity, drug effectiveness, and other pa-

rameters. We implemented an embedded camera function to preview and capture the 

image seen through the microscope. A user will operate with the optical zoom of the 

microscope to bring the image into focus and enlarge the image. The app does provide 

the option to adjust white balance and the option to adjust the color of the image among 

different lighting conditions. Once the image is taken, the app presents the captured 

image to the user for review. When the user accepts the image, the app processes the 

image, counts and records the infected cells and parasites, and displays the results in 

the user interface. Typically, users will take several images until they have acquired 

enough data to meet the requirements of their protocols, which usually involves count-

ing a minimum number of white blood cells. The app will aggregate the parasite counts 

across all images. We implemented the algorithms for WBC and parasite detection us-

ing the OpenCV4Android SDK library. 
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After the image acquisition and processing stage, the app will go through a series of 

input masks for the user to fill in the information associated with the current patient and 

smear. This information is saved in the local database of the app, which we built with 

the SQLite API provided by Android. The app offers a user interface to the database 

where the user can view the data and images of previous smears, allowing hospital staff 

to monitor the condition of patients. 

Since malaria is a disease that is widespread in different areas around the world, the 

app aims to support several languages to accommodate users in different countries. 

With English being the default language, the app, currently, also supports Thai and 

simplified Chinese. We are working on adding support for other languages. This app, 

called NLM Malaria Screener, is available in the Google Play™ store. Fig. 3 shows our 

smartphone-supported automated malaria diagnosis system and a screenshot with de-

tected parasites in a thick blood smear image. 

 

Fig. 3. Automated malaria diagnosis via smartphone. 

4 Experimental Setup and Results 

We acquired Giemsa-stained thick blood smear images from 150 patients infected with 

P. falciparum and from 50 normal patients at Chittagong Medical College Hospital, 

Bangladesh. The images were acquired using an Android smartphone and its camera. 

They were captured with 100x magnification in RGB color space with a 3024×4032 

pixel resolution. An expert microscopist manually annotated each image at the Mahi-

dol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand. We ar-

chived all images and their annotations at the U.S. National Library of Medicine 

(IRB#12972). In this work, we use 2967 thick blood smear images from all 200 pa-

tients, including 1819 images from the 150 patients infected with parasites. We evaluate 

the performance of our automated malaria diagnosis system with five-fold cross evalu-

ation, splitting the dataset into training sets and test sets on patient-level. To achieve a 

better performance, we use a balanced training set with an equal number of positive and 

negative patches. We do so by cropping the positive patches from the manually anno-

tated images while generating the negative patches based on IGMS. 
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4.1 Patch-level five-fold cross evaluation 

We perform the five-fold training, validation, and testing of our customized CNN clas-

sifier on an Intel(R) Xeon(R) CPU E3-1245 (Dual CPU, 3.5GHz, 16GB). Table I shows 

the mean performance of our automated malaria diagnosis system across five folds, 

using a threshold of 0.7 for the CNN classifier, in terms of accuracy, F-score, AUC, 

sensitivity, specificity, precision, and negative predictive value, which are 96.89%, 

81.80%, 98.48%, 90.82%, 97.43%, 74.84% and 99.17%, respectively. The left-hand 

side of Fig. 4 shows the corresponding ROC curve. Note that the performance on pa-

tient-level is generally lower because computing the parasitemia for a patient involves 

classifying multiple parasite candidate patches. 

Table I. Patch classification performance on five folds for 200 patients. 

 Accuracy F-score AUC sensitivity specificity precision Neg_pred 

Mean 96.89% 81.80% 98.48% 90.82% 97.43% 74.84% 99.17% 

Note: Neg_pred is the negative predictive value. 

 

Fig. 4. ROC curves of five-fold cross evaluation on patch-level (left: AUC=98.48±0.15%) and 

on patient-level (right: AUC=84.90%±4.21%). 

4.2 Patient-level five-fold cross evaluation 

For each run of our patient-level cross evaluation, we train on a set of 90 infected pa-

tients and 30 normal patients, validate on a set of 30 infected patients and 10 normal 

patients, and test on a set of 30 infected patients and 10 normal patients. The image set 

for each patient contains on average 12 images.  

For the five-fold cross evaluation on patient-level, we obtain an average AUC value 

of 84.90% with a standard deviation of 4.21%. The right-hand side of Fig. 4 shows the 

ROC curve for the evaluation on patient-level. The average accuracy, precision, sensi-

tivity, and specificity values we obtain on patient-level are 78.00%, 90.42%, 79.33%, 

and 74.00%, respectively. For a specificity of 80%, the average accuracy, precision, 

and sensitivity values on patient-level are 77.50%, 91.90%, and 76.67%, respectively.  
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5 Discussion and Conclusion 

We present the first smartphone-based system exploiting deep learning for detecting 

malaria parasites in thick blood smear images. The idea is to develop a fast, low-cost, 

automated, smartphone-supported tool to diagnose malaria in resource-limited malaria-

prone regions, using image pre-processing and deep learning methods. For five-fold 

cross evaluation on patch-level and patient-level we achieve average AUC values of 

98.48% and 84.90%, respectively, and average accuracy values of 96.89% and 78.00%, 

respectively. The input patch size of the CNN model can influence the experimental 

results. We have evaluated the CNN classifier performance using three different patch 

sizes, 36×36, 44×44, and 52×52, and obtained the best performance with an input size 

of 44×44. When testing on a Samsung Galaxy S6 with an Exynos 7 Octa 7420 Proces-

sor and Android 7.0, our system can diagnose a thick blood smear image within 10 

seconds, proving that we can run powerful deep learning methods for malaria screening 

on a resource-limited mobile platform. 

We have also applied object detection networks, such as faster-RCNN [20] and 

YOLO [21], to detect parasites in thick blood smears. However, these object detection 

networks do not work well for very small objects like parasites, with an average size of 

44x44 pixels in an image of 4032x3024 pixels, resulting in much more false negatives 

compared to our customized CNN classifier. 

In conclusion, we have developed a fast and low-cost diagnostic application for 

smartphones that can be used in resource-limited regions without the need for specific 

malaria expertise. Future work will use multi-scale information to improve the classi-

fication performance and will test the stability of our app under diverse slide prepara-

tion methods and protocols. 
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